DURAL HS GEL HIGH STRENGTH EPOXY GEL FOR ANCHORING AND DOWELING

PACKAGING

DURAL HS GEL is packaged in 627ml dual cartridges

APPROXIMATE YIELD

One 627ml cartridge yields 627.6cm³ of epoxy

CLEAN-UP

Clean tools and application equipment immediately with acetone, xylene or MEK. Clean spills or drips with the same solvents while still wet. Hardened DURAL HS GEL will require mechanical abrasion for removal.

SHELF LIFE

28 Months in original, unopened package. Store between 4°C to 35°C.

SPECIFICATIONS AND COMPLIANCES

Complies with ASTM C881-14 Types I, II, IV and V, Grade 3, Classes A, B and C.

Meets the requirements of AASHTTO M $235\,$

DESCRIPTION

DURAL HS GEL is a two component, 1:1 mix ratio, structural epoxy system that offers exceptional strength in anchoring and doweling applications and can be installed from 4°C to 43°C. DURAL HS GEL has been tested in accordance with ASTM E488 and ASTM E1512 for its ability to resist static, dynamic, seismic and wind loads in uncracked concrete for both threaded rod and rebar.

PRODUCT CHARACTERISTICS

FEATURES / BENEFITS

- Moisture insensitive allowing installation and curing in damp environments
- Withstands freeze-thaw conditions
- Little to no odour
- High modulus
- Service temperature range between 2°C and 82°C

PRIMARY APPLICATIONS

- Anchoring threaded rods, bolts and rebar dowels into uncracked concrete
- Short and long term tensile anchoring
- Grouting dowel bars and tie bars
- Pick-proof sealant for jails / prisons and kennels
- Bonding agent for fresh to hardened concrete, and hardened to hardened concrete

TECHNICAL INFORMATION

The following are typical values obtained under laboratory conditions. Expect reasonable variation under field conditions.

PERFORMANCE OF DURAL HS GEL TO ASTM C881-14

TEST MET		RESULT AT CONDITIONING TEMPERATURES						
TEST MET	HOD PROPERTY	CLASS A (3°C)	CLASS B (10°C)	CLASS C (24°C)				
ASTM C881	Consistency	<6.4mm						
ASTM C881	Pot Life		13 Minutes					
ASTM C881	Gel Time (60g mass)	38 minutes	20 minutes	14 minutes				
ASTM C882	Bond Strength	2 days: 19.7 MPa 14 days: 19.2 MPa	2 days: 22.8 MPa 14 days: 28.2 MPa	2 days: 24.7 MPa 14 days: 27.2 MPa				
ASTM D570	Water Absorption		14 days: 0.53%					
ASTM D648	Heat Deflection Temperature	7 days: 56°C						
ASTM D2566	Linear Coefficient of Shrinkage		0.002					
ASTM D695	Compressive Modulus	7 days: 1441 MPa	7 days: 1455 MPa	7 days: 1682 MPa				
ADTM D695	Compressive Yield	7 days: 74.9 MPa	7 days: 72.3 MPa	1 day: 78.8 MPa 2 days: 79.2 MPa 3 days: 78.9 MPa 7 days: 78.7 MPa				

1. Results are based on testing conducted on a representative lot(s) of product. Results will vary according to the tolerances of the given property.

2. Results may vary due to environmental factors such as temperature, moisture and type of substrate.

3. Pot life is measured as the workable time of 3.8 litres DURAL HS GEL when mixed at 24°C.

Dural HS Gel (1) July 2023

To the best of our knowledge the technical data contained herein are true and accurate at the date of issuance and are subject to change without prior notice. User must contact StonCor Africa to verify correctness before specifying or ordering. No guarantee of accuracy is given or implied. We guarantee our products to conform to StonCor Africa Quality Control. We assume no responsibility for coverage, performance or injuries resulting from use. Liability, if any, is limited to replacement of products. Prices and cost data, if shown, are subject to change without prior notice. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY STONCOR AFRICA, EXPRESS OR IMPLIED, STATUTORY BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

DURAL HS GEL CURE SCHEDULE

SUBSTRATE TEMPERATURE	WORKING TIME	FULL CURE TIME
4°C	36 min	72 hr
24°C	20 min	24 hr
43°C	12 min	18 hr

Working and full cure times are approximate and may be linearly interpolated between listed temperatures. 1.

Substrate and ambient air temperature should be from 4°C to 43°C. 2.

3. When ambient or substrate temperature is below 21°C, condition the DURAL HS GEL to 21°C to 24°C prior to use.

DURAL HS GEN IN-SERVICE CHART

BASE MATERIAL TEMPERATURE	ALLOWABLE LOAD CAPACITY REDUCTION FACTOR
2°C	1.00
21°C	1.00
43°C	0.91
57°C	0.80
66°C	0.80
82°C	0.66

Reduction factors may be linearly interpolated between listed temperatures.

DURAL HS GEL ULTIMATE AND ALLOWABLE TENSION LOADS FOR THREADED ROAD IN NORMAL WEIGHT CONCRETE

THREADED NORMAL ROD DRILL BIT DIAMETER, DIAMETER, mm mm	NORMAL	T EMBEDMENT T DEPTH mm	TENSION LO	AD BASED ON BO	OND STRENGTH	ALLOWABLE TENSION LOAD BASED ON			
	DRILL BIT DIAMETER,		f' c <u>></u> 1	3.8 MPa	f' c <u>> 2</u>	7.6 MPa	ASTM F1554 ASTM A1983 ASTM F593		
	mm		Ultimate kN	Allowable kN	Ultimate kN	Allowable kN	Grade 36 kN	Grade B7 kN	304/316 SS kN
9.5	11.1	86	41.1	10.3	41.1	10.3	9.4	20.3	16.2
12.7	14.2	114	76.0	19.0	99.3	24.8	16.7	36.0	28.8
15.8	19.0	143	106.52	26.5	133.2	33.3	26.1	56.3	45.0
19.0	22.2	171	139.5	34.9	174.7	43.7	37.6	81.1	55.1
22.2	25.4	200	175.8	44.0	239.6	59.9	51.2	110.3	75.0
25.4	28.5	229	214.8	53.7	278.9	69.7	66.9	144.1	98.0
31.7	34.9	286	300.3	75.1	394.1	98.5	104.5	225.2	153.1

Allowable bond strength / concrete capacity was calculated using a safety factor of 4.0.

2. Load adjustment factors for edge distance, spacing distance and in-service temperature should be applied if applicable.

The lower value of either the adjusted allowable bond strength / concrete capacity or steel strength should be used as the allowable tension value for design. 3. 4 Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Tensile = 0.33*Fu*Anom

5. Linear interpolation may be used for intermediate concrete compressive strengths.

DURAL HS GEL ULTIMATE AND ALLOWABLE SHEAR LOADS FOR THREADED ROD IN NORMAL WEIGHT CONCRETE

THREADED NOMIN		EMBEDMENT	SHEAR LOAD BASED C CONCRETE	ON BOND STRENGTH /	ALLOWABLE SHEAR LOAD BASED ON STEEL STRENGTH			
		DEPTH	f' c 13	.8 MPa	ASTM F1554	ASTM A193	ASTM F593	
DIAMETER, DIAMETER,		mm	Ultimate Allowable		Grade 36	Grade B7	304/316 SS	
			kN	kN	kN	kN	kN	
9.5	11.1	86	32.0	8.0	4.8	10.4	8.4	
12.7	14.2	114	57.2	14.3	8.6	18.6	14.8	
15.8	19.0	143	101.7	25.4	13.5	29.0	23.2	
19.0	22.2	171	143.7	35.9	19.4	41.8	28.4	
22.2	25.4	200	161.1	40.3	26.4	56.8	38.7	
25.4	28.5	229	232.0	58.0	34.4	74.2	50.5	
31.7	34.9	286	307.0	76.7	53.8	116.0	78.9	

Allowable bond strength / concrete capacity was calculated using a safety factor of 4.0. 1.

Load adjustment factors for edge distance, spacing distance and in-service temperature should be applied if applicable. 2.

The lower value of either the adjusted allowable bond strength / concrete capacity or steel strength should be used as the allowable tension value for design. 3.

Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Shear = 0.17*Fu*Anom 4.

DURAL HS GEL ULTIMATE AND ALLOWABLE TENSION LOADS FOR REBAR IN NORMAL WEIGHT CONCRETE

NOMINAL EMBED		EMBEDMENT	TENSION LOAD BASED ON BOND STRENGTH / CONCRETE CAPACITY f' c > 13.8 MPa		SHEAR LOA BOND ST CONCRETE f' c <u>></u> 1	D BASED ON RENGTH / CAPACITY 3.8 MPa	ALLOWABLE LOAD BASED ON STEEL STRENGTH				
SIZE	DIAMETER	DEPTH					TEN	SION	SHI	EAR	
	mm	mm	mm	Ultimate kN	Allowable kN	Ultimate kN	Allowable kN	ASTM A615 Grade 60 kN	ASTM A615 Grade 75 kN	ASTM A615 Grade 60 kN	ASTM A615 Grade 75 kN
# 4	15.8	114	76.0	19.0	50.0	12.5	21.4	26.7	13.6	15.1	
# 5	19.0	143	106.2	26.5	93.5	23.4	33.1	41.4	21.1	23.4	
# 6	22.2	171	143.6	34.9	139.5	35.9	47.0	58.7	29.9	33.3	
# 7	25.4	200	177.2	44.3	157.6	39.4	64.1	80.1	40.8	45.4	
# 8	28.5	229	214.8	53.7	171.6	42.9	84.3	105.4	53.8	59.7	

Allowable bond strength / concrete capacity was calculated using a safety factor of 4.0.

Load adjustment factors for edge distance, spacing distance and in-service temperature should be applied if applicable. 2

The lower value of either the adjusted allowable bond strength / concrete capacity or steel strength should be used as the allowable tension value for design. Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Tensile = $(Fy^*A_{nom})/2.5$, Shear = $0.17^*F_u^*A_{nom}$ 3.

4

Values for bond strength of #7 rebar were linearly interpolated from #6 and #8 data. 5.

Dural HS Gel (1) July 2023

To the best of our knowledge the technical data contained herein are true and accurate at the date of issuance and are subject to change without prior notice. User must contact StonCor Africa to verify correctness before specifying or ordering. No guarantee of accuracy is given or implied. We guarantee our products to conform to StonCor Africa Quality Control. We assume no responsibility for coverage, performance or injuries resulting from use. Liability, if any, is limited to replacement of products. Prices and cost data, if shown, are subject to change without prior notice. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY STONCOR AFRICA, EXPRESS OR IMPLIED, STATUTORY BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

DURAL HS GEL REDUCTION FACTORS FOR EDGE DISTANCE IN TENSION

Diameter	mm	9.5	12.7	15.8	19.0	22.2	25.4	31.7
Embedment Depth	mm	86	114	143	171	200	229	286
Critical Edge Distance	mm	133	171	216	260	298	343	432
Min Edge Distance	mm	44	57	70	89	102	114	146
Edge Distan	ce		II			De desett		
mm		A 1	liowable	e Load C	apacity	Reductio	on Facto	r
44		0.63						
57		0.68	0.64					
70		0.73	0.68	0.66				
76		0.76	0.70	0.67				
89		0.81	0.74	0.70	0.67			
102		0.87	0.78	0.73	0.70	0.71		
114		0.92	0.82	0.76	0.72	0.73	0.74	
127		0.97	0.86	0.79	0.75	0.75	0.75	
133		1.00	0.88	0.81	0.76	0.75	0.76	
146			0.92	0.84	0.78	0.77	0.78	0.77
159			0.96	0.87	0.81	0.79	0.79	0.78
172			1.00	0.90	0.83	0.81	0.81	0.79
190				0.94	0.87	0.84	0.83	0.81
216				1.00	0.92	0.88	0.86	0.83
241					0.96	0.92	0.88	0.85
260					1.00	0.94	0.91	0.86
279						0.97	0.93	0.88
298						1.00	0.95	0.89
318							0.97	0.91
343							1.00	0.93
381								0.96
406								0.98
432								1.00

1. Minimum slab thickness equals 1.5 x embedment depth.

2. Linear interpolation may be used for intermediate edge distances.

DURAL HS GEL REDUCTION FACTORS FOR EDGE DISTANCE IN SHEAR

Diameter	mm	9.5	12.7	15.8	19.0	22.2	25.4	31.7
Embedment Depth	mm	86	114	143	171	200	229	286
Critical Edge Distance	mm	133	171	216	260	298	343	432
Min Edge Distance	mm	44	57	70	89	102	114	146
Edge Distan	ce		llowabl		anacity	Poducti	on Eacto	r
mm		4	liiowabie		арасну	Reduction	JIII acto	1
44		0.31						
57		0.41	0.29					
70		0.51	0.37	0.28				
76		0.56	0.41	0.31				
89		0.66	0.49	0.37	0.26			
102		0.75	0.57	0.44	0.32	0.26		
114		0.85	0.65	0.50	0.37	0.31	0.26	
127		0.95	0.73	0.56	0.43	0.35	0.30	
133		1.00	0.76	0.59	0.45	0.38	0.32	
146			0.84	0.65	0.51	0.43	0.36	0.25
159			0.92	0.72	0.56	0.47	0.40	0.29
172			1.00	0.78	0.62	0.52	0.44	0.32
190				0.87	0.70	0.59	0.50	0.37
216				1.00	0.81	0.69	0.59	0.44
241					0.92	0.78	0.67	0.50
260					1.00	0.86	0.73	0.55
279	279					0.93	0.79	0.60
298						1.00	0.86	0.65
318							0.92	0.70
343							1.00	0.77
381								0.87
406								0.93
432								1.00

1. Minimum slab thickness equals 1.5 x embedment depth.

2. Linear interpolation may be used for intermediate edge distances.

DURAL HS GEL REDUCTION FACTORS FOR SPACING DISTANCE IN TENSION

Diameter	mm	9.5	12.7	15.8	19.0	22.2	25.4	31.7
Embedment Depth	mm	86	114	143	171	200	229	286
Critical Spacing Distance	mm	133	171	216	260	298	343	432
Min Spacing Distance	mm	44	57	70	89	102	114	146
Spacing Distan	ce		llowabl		apacity	Poducti	on Eacto	r
mm		"	liowabi		арасну	Reduction		1
44		0.69						
57		0.73	0.69					
70	_	0.76	0.72	0.69				
76		0.78	0.73	0.70				
86		0.81	0.75	0.72	0.69			
102		0.85	0.79	0.74	0.71	0.69		
114		0.89	0.81	0.77	0.73	0.71	0.69	
143		0.97	0.88	0.82	0.77	0.74	0.72	0.69
152		1.00	0.90	0.83	0.79	0.75	0.73	0.70
165			0.92	0.85	0.80	0.77	0.75	0.71
184			0.97	0.89	0.83	0.79	0.77	0.73
200			1.00	0.91	0.85	0.81	0.78	0.74
216				0.94	0.88	0.83	0.80	0.75
251				1.00	0.93	0.87	0.84	0.78
267					0.95	0.89	0.86	0.80
302					1.00	0.94	0.89	0.83
318						0.96	0.91	0.84
352						1.00	0.95	0.87
368							0.97	0.88
400							1.00	0.91
432								0.94
470								0.97
502								1.00

1. Minimum slab thickness equals 1.5 x embedment depth.

2. Linear interpolation may be used for intermediate edge distances.

Dural HS Gel (1) July 2023

To the best of our knowledge the technical data contained herein are true and accurate at the date of issuance and are subject to change without prior notice. User must contact StonCor Africa to verify correctness before specifying or ordering. No guarantee of accuracy is given or implied. We guarantee our products to conform to StonCor Africa Quality Control. We assume no responsibility for coverage, performance or injuries resulting from use. Liability, if any, is limited to replacement of products. Prices and cost data, if shown, are subject to change without prior notice. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY STONCOR AFRICA, EXPRESS OR IMPLIED, STATUTORY BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

DIRECTIONS FOR USE

Drilling and Cleaning Holes: Using a rotary hammer drill, and a bit that conforms to ANSI B212.15 and is the appropriate size for the anchor diameter to be installed, drill the hole to the specified embedment depth. Always wear appropriate personal protection equipment (PPE) for eyes, ears and skin and avoid inhalation of dust during the drilling and cleaning process. Refer to the Safety Data Sheet for details prior to proceeding.

Remove any standing water from hole prior to beginning the cleaning process. Using oil-free compressed air with a minimum pressure of 80 psi, insert the air wand to the bottom of the drilled hole and blow out the debris with an up / down motion for a minimum of 4 to 5 seconds.

Select the correct wire brush size for the drilled hole diameter, making sure that the brush is long enough to reach the bottom of the drilled hole. Reaching the bottom of the hole, brush in an up and down and twisting motion. The brush should contact the walls of the hole. If it does not, the brush is either too worn or small and should be replaced with a new brush of the correct diameter. Blow the hole out once more to remove brush debris using oil-free compressed air with a minimum pressure of 80 psi. Visually inspect the hole to confirm it is clean. If installation will be delayed for any reason, cover cleaned holes to prevent contamination.

Preparing Cartridges: Remove the protective cap from the DURAL HS GEL cartridge and insert the cartridge into the dispensing tool. Before attaching static mixer, balance the cartridge by dispensing a small amount of material until both components are flowing evenly. Only after the cartridge has been balanced, attach the static mixer to the cartridge. Take note of the air and base material temperatures and review the working / full cure time prior to starting the injection process.

Dispense the initial amount of material from the mixing static mixer onto a disposable surface until the product is a uniform grey colour with no streaks, as adhesive must be properly mixed in order to perform as published. Dispose of the initial amount of adhesive prior to injection into the drill hole. When changing cartridges, never re-use static mixers. A new static mixer should be used with each new cartridge.

Installation and Curing: Insert the static mixer into the bottom of the hole and fill from the bottom to the top approximately two-thirds full, being careful not to withdraw the nozzle too quickly as this may trap air in the adhesive. When using a pneumatic dispensing tool, ensure that pressure is set at 90 psi maximum. Do not disturb, torque or apply any load to the installed anchor until the specified full cure time has passed. The amount of time needed to reach full cure is base material temperature dependent. Refer to the cure schedule table for the full cure time.

Prior to inserting the threaded rod or rebar into the hole, make sure it is clean and free of oil and dirt and that the necessary embedment depth is marked on the anchor element. Insert the anchor element into the hole while turning 1 to 2 rotations prior to the anchor reaching the bottom of the hole. Excess adhesive should be visible on all sides of the fully installed anchor. For horizontal installations, wedges should be used to center and support the anchor while the adhesive is curing. Use extra care with deep embedment or high temperature installations to ensure that the working time has not elapsed prior to the anchor being fully installed.

Setting Ports and Sealing Cracks: Place a small amount of mixed DURAL HS GEL on the back of the port and carefully place it centered over the crack. Be careful not to fill the hole of the injection port. Place neat DURAL HS GEL over the face of the cracks to be pressure injected, and around each injection port. Allow DURAL HS GEL to sufficiently harden before injecting, to prevent blowouts.

PRECAUTIONS / LIMITATIONS

- Working time and cure time will decrease as the temperature increases, and will increase as the temperature decreases.
- Install DURAL HS GEL with a high quality, professional grade gun with a gear ratio of at least 26:1 for ease of application and best results.
- Do not thin DURAL HS GEL as this may affect cure and performance.
- DURAL HS GEL will discolour upon prolonged exposure to ultraviolet light and high intensity artificial lighting.
- Not recommended for any overhead application where there may be a sustained tensile load.
- For anchoring applications, concrete must be a minimum of 21 days old prior to anchor installation.
- Performance characteristics, such as seismic and long term load resistance, were tested in accordance with ASTM E488-96 (2003) and E1512-01 (2015) provisions and not that of ACI 355.4, and are therefore not applicable in the concrete tension zone. Always consult with a design professional prior to use to ensure product applicability.
- In all cases, consult the safety data sheet before use.

Dural HS Gel (1) July 2023

To the best of our knowledge the technical data contained herein are true and accurate at the date of issuance and are subject to change without prior notice. User must contact StonCor Africa to verify correctness before specifying or ordering. No guarantee of accuracy is given or implied. We guarantee our products to conform to StonCor Africa Quality Control. We assume no responsibility for coverage, performance or injuries resulting from use. Liability, if any, is limited to replacement of products. Prices and cost data, if shown, are subject to change without prior notice. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY STONCOR AFRICA, EXPRESS OR IMPLIED, STATUTORY BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.